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An adaptive grey PID-type fuzzy
controller design for a non-linear
liquid level system
Erdal Kayacan and Okyay Kaynak
Electrical and Electronic Engineering Department, Bogazici University, Bebek,
Istanbul 34342, Turkey

Product-sum-type fuzzy controllers are known to have similar characteristics to PD-type
controllers. In the case of type-0 control systems, PID-type fuzzy controllers have been
proposed in the literature in order to eliminate the steady-state error. However, these control
methods, essentially based on conventional PID theory, have no predictive capabilities. The
concept of grey system theory, which has a certain prediction capability, offers an alternative
approach for various kinds of conventional control methods, such as PID control and fuzzy
control. This paper proposes a grey prediction-based fuzzy PID controller that can overcome
the stated shortcomings. In order to obtain a better controller performance, another fuzzy
controller is designed to change the step size of the grey predictor. A non-linear liquid level
system is taken as a test bed. The grey model developed is examined under several different
conditions and it is shown that the proposed grey fuzzy PID controller can predict the future
output value of the system. It is clear that the proposed adaptive PID-type fuzzy controller is
effective in controlling such a non-linear system accurately by changing the step size adaptively
for real-time working.

Key words: adaptive step size; GM(1,1) model; grey fuzzy PID-type control; grey predictive

control; grey predictors; liquid level system

1. Introduction

In control theory, a system can be defined with a colour that represents the amount of
clear information about that system. For instance, a system can be called ‘‘black box’’ if
the internal characteristics or mathematical equations that describe its dynamics are
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completely unknown. On the other hand, if the description of the system is completely
known, it can be called a ‘‘white system’’. Similarly, a system that has both known and
unknown information is defined as a ‘‘grey system’’. In real life, because of noise from
both inside and outside of the system (and the limitations of our cognitive abilities!),
the information we can learn about that system is always uncertain and limited in
scope (Lin and Liu, 2004). Therefore, every system can be considered a grey system
in real life because there are always some uncertainties.

There are many situations in industrial control systems when control engineers face
the difficulty of incomplete or insufficient information. The reason for this is because
of the lack of modelling information or the fact that the right observation and control
variables have not been employed. For instance, the data collected from a motor
control system always contains some grey characteristics related to the time-varying
parameters of the system and measurement difficulties. Similarly, it is difficult to
forecast the electricity consumption of a region accurately because of various kinds of
social and economic factors. These factors are generally random and make it difficult
to obtain an accurate model.

Grey system theory was first introduced by Professor Deng Ju-long from China in
the international journal Systems and Control Letters in 1982 (Deng, 1989). The theory is
distinguished by its ability to deal with the systems that have partially unknown
parameters. It is therefore a good candidate for use in real-time control systems. With
the use of grey system mathematics (eg, grey equations and grey matrixes, etc.), it is
possible to generate meaningful information using insufficient and poor data. Grey
predictors have the ability to predict the future outputs of a system by using recently
obtained data.

During the last two decades, grey system theory has developed rapidly and caught
the attention of many researchers. It has been widely and successfully applied to
various systems such as social, economic, financial, scientific and technological,
agricultural, industrial, transportation, mechanical, meteorological, hydrological,
medical, military, etc., systems. Some early milestones in control engineering area
are as follows: a grey prediction controller, combined with a conventional controller
for an unknown system was proposed by Cheng in 1986 (Cheng, 1986). In 1994,
Huang proposed the basic structure of a grey prediction fuzzy model to control
robotic motion and an inverted pendulum (which is a classical control problem;
Huang and Hu, 1995; Huang and Huang, 1994). In these studies and the others, it has
been seen that grey system theory-based approaches can achieve good performance
characteristics when applied to real-time systems, since grey predictors adapt their
parameters to new conditions as new outputs become available. Because of this, grey
controllers are more robust with respect to noise, lack of modelling information and to
other disturbances when compared with conventional controllers.

Although probability and statistics, fuzzy theory and grey system theory all deal
with uncertain information, different methods and mathematical tools are used to
analyse the data. While fuzzy mathematics mainly deals with problems associated with
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cognitive uncertainty with the help of affiliation functions, probability and statistics
need special distribution functions and samples of reasonable size to draw inferences.
With these two approaches, serious difficulties are therefore faced in handling
situations when no prior experience is available or when the sample size is small
(Liu and Lin, 1998). Under such conditions, grey system theory and grey controllers can
provide some advantages, because they have the ability to handle uncertain informa-
tion and use the data effectively. Grey controllers investigate the behavioural
characteristics of a system using a sequence of definite white numbers. The
characteristic data obtained from the system is expected to contain the physical laws
of the system. The methods of probability and statistics study the uncertain data from a
stochastic point of view. They focus on the statistical laws existing in the history of the
uncertain data and the probability of data within possible outcomes (Lin and Liu, 2004).

The traditional grey predictor structure uses a fixed step size (Feng and Wong,
2002). A grey predictor with a small fixed forecasting step size will make the system
respond faster but cause larger overshoots. Conversely, a bigger step size of grey
predictor will cause overcompensation, resulting in a slow system response. In order
to obtain a fast system response with little overshoot, the step size of the grey
predictor should be changed adaptively. In the literature on grey system theory, there
are some methods that tune the step size of the grey predictor according to the input
state of the system (Wong and Liang, 1997). In order to determine the appropriate
forecasting step size, some online rule-tuning algorithms using a fuzzy inference
system have been proposed for the control of an inverted pendulum, a fuzzy tracking
method for a mobile robot and non-minimum phase systems (Feng and Wong, 2002;
Wong and Liang, 1997; Wong et al., 2001). In another paper, a Sugeno-type fuzzy
inference system has been proposed for large time-delay systems (Han et al., 2005). In
this work, a similar but simpler approach is proposed.

2. Fundamental concepts of grey system theory and GM(1,1) model

2.1 Grey system modelling

Grey numbers, grey algebraic and differential equations, grey matrices and their
operations are used to deal with grey systems. A grey number is a number whose
value is not known exactly but it takes values within a certain range. Grey numbers
might have only upper limits, only lower limits or both. Grey algebraic and
differential equations, and grey matrices all have grey coefficients.

2.2 Preliminaries

The GM(1, 1) model can only be used in positive data sequences (Deng, 1989). In this
paper, a non-linear liquid level tank is considered. It is obvious that the liquid level in
a tank is always positive, so the GM(1,1) model can be used to forecast the liquid level
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in this tank. A critical constraint of the grey model GM(1, 1) is that the ratio x(0)(k�1)/
x(0)(k) must be in the interval of [0.1345; 7.389] (Deng, 1989).

2.3 GM(n, m) model

Grey models can predict the future outputs of systems with high accuracy without a
mathematical model of the actual system. In grey systems theory, GM(n,m) denotes a
grey model, where n is the order of the difference equation and m is the number of
variables. Although various types of grey models can be mentioned, most of the
previous researchers have focused their attention on the GM(1, 1) model in their
predictions because of its computational efficiency. It should be noted that in real-time
applications, the computational burden is the most important parameter after the
performance.

2.4 GM(1, 1) Model

The GM(1, 1)-type of grey model is most widely used in the literature, pronounced as
the ‘‘grey model first order one variable’’. This model is a time-series forecasting
model. The differential equations of the GM(1, 1) model have time-varying
coefficients. In other words, the model is renewed as the new data become available
to the prediction model.

In grey systems theory, the process of extracting the governing laws of a system
using the available data is known as the generation of the grey sequence (Liu and Lin,
1998). It is argued that even though the available data of the system, which are
generally white numbers, are too complex or chaotic, they always obey some
governing laws. If the data obtained from a grey system is somehow smoothed, it is
easier to derive any special characteristics of that system. In order to smooth the
randomness, the primitive data obtained from the system to form the GM(1, 1) is
subjected to an operator, named the accumulating generation operation (AGO; Deng,
1989), described below. The differential equation [ie, GM(1, 1)] thus evolved is solved
to obtain the n-step ahead predicted value of the system. Finally, using the predicted
value, the inverse accumulating operation (IAGO) is applied to find the predicted
values of original data.

Consider a single-input and single-output system. Assume that the time sequence
X(0) represents the outputs of the system:

Xð0Þ ¼ xð0Þð1Þ,xð0Þð2Þ, . . . , xð0ÞðnÞ
� �

, n � 4 ð1Þ

where X(0) is a non-negative sequence and n is the sample size of the data. When this
sequence is subjected to the AGO, the following sequence X(1) is obtained. It is obvious
that X(1) is monotone increasing.

Xð1Þ ¼ xð1Þð1Þ,xð1Þð2Þ, . . . , xð1ÞðnÞ
� �

, n � 4 ð2Þ
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where

xð1ÞðkÞ ¼
Xk
i¼1

xð0ÞðiÞ, k ¼ 1, 2, . . . , n ð3Þ

The generated mean sequence Z(1) of X(1) is defined as:

Zð1Þ ¼ zð1Þð1Þ, zð1Þð2Þ, . . . , zð1ÞðnÞ
� �

ð4Þ

where z(1)(k) is the mean value of adjacent data, ie,

zð1ÞðkÞ ¼
1

2
xð1ÞðkÞ þ

1

2
xð1Þðk� 1Þ, k ¼ 2, 3, . . . , n ð5Þ

The least square estimate sequence of the grey difference equation of GM(1,1) is
defined as follows (Deng, 1989):

xð0ÞðkÞ þ azð1ÞðkÞ ¼ b ð6Þ

The whitening equation is therefore as follows:

dxð1ÞðtÞ

dt
þ axð1ÞðtÞ ¼ b ð7Þ

In above, [a, b]T is a sequence of parameters that can be found as follows:

a b
� �T

¼ ðBTBÞ�1BTY ð8Þ

where

Y ¼ xð0Þð2Þ,xð0Þð3Þ, . . . , xð0ÞðnÞ
� �T

ð9Þ

B ¼

�zð1Þð2Þ 1

�zð1Þð3Þ 1

: :

: :

: :

�zð1ÞðnÞ 1

2
6666666664

3
7777777775

ð10Þ

Kayacan and Kaynak 37

 at BOGAZICI UNIV LIBRARY on January 14, 2009 http://tim.sagepub.comDownloaded from 

http://tim.sagepub.com


According to Equation (7), the solution of x(1)(t) at time k:

xð1Þp ðkþ 1Þ ¼ xð0Þð1Þ �
b

a

� �
e�ak þ

b

a
ð11Þ

To obtain the predicted value of the primitive data at time (kþH), the IAGO is used to
establish the following grey model.

xð0Þp ðkþHÞ ¼ xð0Þð1Þ �
b

a

� �
e�aðkþH�1Þð1� eaÞ ð12Þ

2.5 GM(1,1) rolling model

The GM(1, 1) rolling model is based on the forward data of a sequence to build the
GM(1, 1). For instance, using x(0)(k), x(0)(kþ 1), x(0)(kþ 2) and x(0)(kþ 3), the model
predicts the value of the next point x(0)(kþ 4). In the next few steps, the first point is
always shifted to the second. This procedure is repeated until the end of the sequence;
this method is called ‘‘rolling check’’ (Wen, 2004). A GM(1, 1) rolling model is used to
predict the long continuous data sequences such as the outputs of a system, price of a
specific product, trend analysis for finance statements or social parameters, etc. In this
paper, a GM(1, 1) rolling model is used to predict the future outputs of the non-linear
liquid level system.

3. Combining fuzzy and PID-type control

3.1 Analysis of the fuzzy controller

Consider a product-sum-type fuzzy controller with two inputs and one crisp output
(MISO). Let the inputs to the fuzzy controller be the error e and the rate of change of
the error é, and the output of the fuzzy controller (ie, the input to the controlled
process) be u. If an analysis of this controller is made, it can be seen that it behaves
approximately like a PD controller. We can therefore consider it a time-varying
parameter PD controller (Qiau and Muzimoto, 1996). Such a controller is named a
PD-type fuzzy controller (PDFC) in the literature.

It is well known that if the controlled system is ‘‘type 0’’, a P- or PD-type controller
cannot eliminate the steady-state error. Although the use of an integral term in the
controller (such a PI controller) can take care of the steady-state error, it can deteriorate
the transient characteristics by slowing the response. However, with a PID-type fuzzy
controller, fast rise times and small overshoots as well as short settling times can be
achieved with no steady-state error.
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3.2 PID-type fuzzy control

In order to design a PID-type fuzzy controller (PIDFC), one can design a fuzzy
controller with three inputs: error, the rate of change of error and the integration of the
error. Handling the three variables is, however, in practice, quite difficult. Besides,
adding another input to the controller will increase the number of rules exponentially.
This requires more computational effort, leading to a larger execution time.

Because of the drawbacks mentioned above, a PID-type fuzzy controller consisting
of only the error and the rate of change of error is used in the proposed method. This
allows PD- and PI-type fuzzy controllers to work in parallel (Qiau and Muzimoto,
1996; Woo et al., 2000).

An equivalent structure is shown in Figure 1, where � and � are the weights of
the PI- and PD-type controllers, respectively. Similarly, K and Kd are the scaling factors
for e and é, respectively.

The output of the controller can be expressed as:

uc ¼ �uþ �

Z
udt ð13Þ

As the �/� ratio becomes larger, the effect of the derivative control increases with
respect to integral control (Engin et al., 2004). This controller is called as PID-type
fuzzy controller (PIDFC).

4. Grey PID-type fuzzy control

4.1 Rule base and membership functions

In a conventional fuzzy inference system, an expert, who is familiar with the system to
be modelled, decides on the number of rules. The fuzzy PID-type control rule base
employed in this paper is shown in Table 1. The membership functions of error, rate
of change of error and control signal, shown in Figure 2, are chosen as triangular
membership functions.

K Fuzzy
Controller

β∫

α

Plant

e u uc+ 

+ 

r +

de/dt Kd

e
.− 

Figure 1 Block diagram of the PID-type fuzzy control system
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4.2 Design of grey PID-type fuzzy controller

In most control applications, the control signal is a function of the error present
in the system at a prior time. This methodology is called ‘‘delay control’’. In grey
systems theory, predicted error is used instead of current measured error (Wang et al.,
2003). Along similar lines, during the development of the grey PID-type fuzzy
controller, the predicted error is considered the error of the system. The block
diagram of the grey fuzzy PID control system with a fixed step size and the adaptive
grey PID-type fuzzy controller with a variable step size proposed in this paper are
showed in Figures 3 and 4, respectively.

In order to adapt the forecasting step size H to different states of the controller
changing with error and the derivative of the error, another fuzzy controller is designed.
The inputs of this fuzzy controller are e and é. The output variable is forecasting
step size H. Triangle membership functions are used for the fuzzification process.

Table 1 A general fuzzy PID-type rule base

e

é NL NM NS ZR PS PM PL

PL ZR PS PM PL PL PL PL
PM NS ZR PS PM PL PL PL
PS NM NS ZR PS PM PL PL
ZR NL NM NS ZR PS PM PL
NS NL NL NM NS ZR PS PM
NM NL NL NL NM NS ZR PS
NL NL NL NL NL NM NS ZR

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1 ZRNL NM NS PS PM PL 

Figure 2 The membership functions of e, é and u

40 Adaptive grey PID-type fuzzy controller design for a non-linear liquid level system

 at BOGAZICI UNIV LIBRARY on January 14, 2009 http://tim.sagepub.comDownloaded from 

http://tim.sagepub.com


The fuzzy variables e and é are partitioned into five subsets (NL, NS, ZR, PS and PL)
and the output variable H is partitioned into five subsets (VS, S, MD, B, VB). The
ranges of e, é and H are considered to be [�0.4; 1], [�0.05; 0.05] and [0; 60], respectively
(Table 2).

Table 2 A general rule base for fuzzy step size controller

e

H PL PS ZR NS NL

é PL VB VB B MD VS
PS VB B MD S S
ZR S S S S MD
NS S S MD MD VB
NL VS MD B B VB

r +
yout

−

ypredicted

e
.

u

e

H 

Fuzzy PID
controller 

Nonlinear
system

de/dt

Step size
controller 

Grey
predictor

Figure 4 Block diagram of the adaptive grey fuzzy PID control
system with a variable step size

r +
yout

−
Fuzzy PID
controller

Nonlinear
system

Grey
predictor

de/dt
e
.

e
u

ypredicted

Figure 3 Block diagram of the grey PID-type fuzzy control
system with a fixed step size
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5. Description of controlled object

A model of a non-linear liquid-level system will be obtained in this part of the paper
(Doebelin, 1998). Figure 5 shows a simple system, the objective of which is to control

the level of the liquid in a tank by adjusting the input flow rate in an effective way.
In this system, Qin and Qout are the maximum liquid flow rates in m3/s for input

and outlet, respectively. The controlled input liquid flow rate qin is given by:

qin ¼ Qin � sinð’ðtÞÞ ’ðtÞ 2 0,�=2½ � ð14Þ

The output liquid flow rate qout (that equals Qout since no control is applied) is

defined as:

qout ¼ aout

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghðtÞ

p
ð15Þ

where aout is the surface area of the outlet and g is the gravitational constant.
The output variable h, which is the level of the liquid, is calculated as:

hðtÞ ¼ hð0Þ þ
1

A

Z t

0

ðqinð�Þ � qoutð�ÞÞd� ð16Þ

where A is the surface area of the tank.
The numerical values used in this paper are: A¼ 1 m2, aout¼ 0.01 m2, Qin¼ 0.12 m3/s

and h(0)¼ 0.

Qout qout

h

Qin qin

Discharge
valve 

Control valve
for flap angle ϕ

Figure 5 A simple liquid-level system

42 Adaptive grey PID-type fuzzy controller design for a non-linear liquid level system

 at BOGAZICI UNIV LIBRARY on January 14, 2009 http://tim.sagepub.comDownloaded from 

http://tim.sagepub.com


6. Non-linear model simulations

A number of simulation studies have been carried out in the plant described in the
previous section. The proposed controller types have been investigated for two

different cases. In case 1, the grey predictor is considered with a fixed step size, and

with a variable step size in case 2.

6.1 Case 1: Grey predictor with a fixed step size

The numerical values used in this paper are K¼1 and Kd¼ 0.1. Figure 6 shows the

response of the system to a PIDFC and a conventional PID controller. As can be seen,

the PIDFC has a better capability, when compared with a conventional PID controller

in controlling such a non-linear system.
Figure 7 compares the unit step response of the system with a conventional PIDFC

and a grey controller with different step sizes, ie, H in Equation (12). As can be seen,

when the step size of the grey controller is large, it will cause overcompensation,

resulting in a slow system response. Conversely, a smaller step size will make the

system respond faster but cause larger overshoots (Wang, 1998). The response
with H¼ 20 is better than the one obtained with the fuzzy PID-type controller.

Further simulations, shown in Figures 8 and 9, are carried out with this value of H to
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Figure 6 Step responses of the system to PIDFC and conventional
PID controller (�¼ 0.5, �¼ 5)
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Figure 7 Step responses of conventional and Grey PID-type fuzzy
controllers with different step sizes (�¼ 0.5, �¼ 3)
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Figure 8 Grey PID-type fuzzy controller structure with different
coefficients (�¼ 0.6, �¼ 6, H¼ 20)
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determine the best parameters of the grey controller. The response shown in Figure 9
has a fast rise time and reasonable overshoot.

Figure 10 shows the unit step response of the system to grey PIDFC with the band-
limited white noise at the output measurement. It is seen that the grey PIDFC with
grey prediction shows more robust characteristics when compared with a conven-
tional PIDFC.

6.2 Case 2: Grey predictor with a variable step size

In this section, computer-simulated dynamic responses are performed on the non-
linear liquid level system; however, a grey predictor with a variable step size is
investigated in this time.

Figure 11 shows the step responses of the system to a PIDFC, a grey PIDFC with a
fixed H and a grey PIDFC with variable step size. With the grey PIDFC using a
variable step size, the system has a fast rise time and a reasonable overshoot.
However, a switching characteristic can be seen on the response of the grey PIDFC
with variable step size.

Figure 12 shows the unit step responses of the system to a grey PIDFC with a fixed
step size and a grey PIDFC with variable step size with the band-limited white noise
at the output measurement. The noise power, which is the height of the power spectral
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Figure 9 Grey PID-type fuzzy controller structure with different
coefficients (�¼ 0.2, �¼ 2.4, H¼ 20)
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Figure 10 Grey PID-type fuzzy controller with band-limited
white noise at the output measurement (�¼ 0.2, �¼ 2.4, H¼ 20)
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Figure 11 Step responses of the system to a grey PIDFC with a
fixed H¼ 20 and a grey PIDFC with variable H (�¼ 3.2, �¼ 0.6)
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density of the white noise, is equal to 0.0002. The correlation time of the noise is equal
to 0.4 s. Although the response of the conventional grey controller is acceptable, the
grey predictor with variable step size is better under noisy conditions. This indicates
that adaptive grey predictive controllers are more robust in real-time systems that are
subject to noise from both inside and outside of the system.

Figures 13 and 14 show the unit step responses of the non-linear liquid level system
to a grey PIDFC with a fixed step size and a grey PIDFC with variable step size when
the surface area of the outlet aout is reduced to its 0.2 times its normal value in the
100th second and reduced to zero between the 100th and 110th seconds, respectively.

7. Conclusions

In real life, the mathematical model of a physical system cannot be defined exactly;
there are always some uncertainties. A control method that has the ability to handle
this difficulty would very much be welcomed. In this paper, it is shown that a grey
prediction approach is an efficient way of controlling highly non-linear, uncertain
systems. The controller described is a combination of a grey prediction approach with
a PID-type fuzzy controller. The simulation results presented indicate that the grey
prediction model can forecast the future outputs of a grey system to be used to
overcome the drawbacks of delay-control methodology. The simulation results also
show that the proposed method not only reduces the overshoot and the rise time but
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Figure 12 Step responses of the system to a grey PIDFC with a
fixed H¼ 20 and a grey PIDFC with variable H when there is
white noise at the output measurement (�¼ 3.2, �¼ 0.6)
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Figure 13 Step responses of the system to a grey PIDFC with a
fixed H¼ 20 and a grey PIDFC with variable H when the surface
area of the outlet aout is reduced to 0.2 times its normal value
(�¼ 3.2, �¼ 0.6)
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Figure 14 Step responses of the system to a grey PIDFC with a
fixed H¼ 20 and a grey PIDFC with variable H when the surface
area of the outlet aout is reduced to zero for 10 s (�¼ 3.2, �¼ 0.6)
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also maintains a better disturbance rejection. Noise that exists in various stages of the

system is an additional problem. The proposed adaptive grey PIDFC has the ability to

handle these difficulties.
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