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Oil Well Diagnosis by Sensing Terminal
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Abstract—Oil well diagnosis usually requires dedicated sensors
placed on the surface and the bottom of the well. There is signifi-
cant interest in identifying the characteristics of an oil well by using
data from these sensors and neural networks for data processing.
The purpose of this paper is to identify oil well parameters by mea-
suring the terminal characteristics of the induction motor driving
the pumpjack. Information about oil well properties is hidden in in-
stantaneous power waveforms. The extraction of this information
was done using neural networks. For the purpose of training neural
networks, a complex model of the system, which included 25 differ-
ential equations, was developed. Successful application of neural
networks was possible due to the proposed signal preprocessing
which reduces thousands of measured data points into 20 scalar
variables. The special input pattern transformation was used to en-
hance the power of the neural networks. Two training algorithms,
originally developed by authors, were used in the learning process.
The presented approach does not require special instrumentation
and can be used on any oil well with a pump driven by an induction
motor. The quality of the oil well could be monitored continuously
and proper adjustments could be made. The approach may lead to
significant savings in electrical energy, which is required to pump
the oil.

Index Terms—Induction motor, neural networks, oil well.

I. INTRODUCTION

O IL WELL diagnosis usually requires sophisticated tools
and introduces specialized sensors placed on the surface

and the bottom of the well [1], [2]. Recently, there is significant
interest in identifying characteristics of oil wells using neural
networks [3]–[14]. All of the described approaches use infor-
mation from special sensors. The purpose of this approach is to
use the information from the terminal characteristics of the in-
duction motor that drives the pumpjack. Neural networks are al-
ready successfully used for fault identification of electrical mo-
tors [15]–[21].

With the presented approach, the quality of the oil well could
be monitored continuously and proper adjustments could be
made. This approach may lead to significant savings in electrical
energy, which is required to pump the oil. With this approach,
motors with smaller nominal power can be used instead of over-
rated motors operating at a fraction of their nominal power. The
application of this new technology could lead to constant and ef-
fective monitoring of oil wells. These measurements may lead
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Fig. 1. Schematic sketch of an oil well with pump jack.

to better diagnosis, adjustment, choice for an optimum pumping
rate, and more efficient use of energy.

It is not economically justified to introduce faults in real oil
wells. Therefore, for the purpose of generating training patterns,
a complex model of oil well was developed. This model is de-
scribed in Section II. Section III is devoted to numerical simula-
tion. Section IV describes the data preprocessing and compres-
sion. Section V presents neural network architecture and input
data transformation, which leads to easy separation of clusters.
Section VI includes results of identification of specific faults.

II. OIL WELL MODEL

The model of the pumpjack and the oil well is relatively com-
plex. A schematic diagram of the oil well is shown in Fig. 1. The
entire system is described by a 25th-order system of differential
equations and 25 state variables. Both the induction motor and
the gearbox with jack introduce relatively complex nonlinear
systems, which require numerical solutions. A more detailed de-
scription of the different portions of this model is given in this
section.

A. Model of Induction Motor

For the induction motor, a third-order IEEE standard model
was used. Since oil wells are usually located in remote places,
the standard model of an induction motor was enhanced with
several additional elements such as , and , which
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Fig. 2. Equivalent diagram of induction motor with transmission lines.

represent additional loses, transmission line resistance, and in-
ductance, respectively. The equivalent diagram of an induction
motor with transmission lines is shown in Fig. 2.

The mesh currents and are given by

(1)

Input complex power and output torque are

(2)

The real power delivered to load is

(3)

where is the slip, Hz, and .
Using the above relations, the input powers and slip can be

computed numerically as a function of the output torque. Fig. 3
shows this relation for the 10-kW motor with the following pa-
rameters: V

, and
.

B. Model of Gearbox With Jack

The gearbox and jack are described by four state variables: the
angular flywheel velocity, angular flywheel acceleration, beam
angle, and beam angular velocity. Note that a relatively complex
nonlinear relationship exists between the angular position of the
gear flywheel and the angular position of the pumpjack beam.
For the geometry shown in Fig. 4 the following relationships are
valid:

(4)

(5)

(6)

By inserting (4) and (5) into (6) and after several manipulations,
one can obtain (7), shown at the bottom of the page.This equa-

Fig. 3. Slip, and input real and reactive powers as a function of the output
torque for the 10-kW induction motor.

Fig. 4. Pump jack geometry.

tion can be easily solved numerically using the Gauss–Seidl ap-
proach. The sucker rod displacement

(8)

is proportional to angle which is an implicit function of the
rotation angle . The can be approximated by

(9)

The approximate solution gives a pure sinusoidal relation-
ship, while the actual relationship is a distorted sinusoid, as
shown in Fig. 5. The differences between actual and approxi-
mate relationships are shown in Fig. 6. For both figures, Figs. 5
and 6, the following geometrical parameters, as shown in Fig. 4,
were used: m, m, m, m,
m, m, m, and m.

Since the shape of instantaneous power on the induction
motor terminals carries important information about the prop-
erties of the oil well, the actual relationships must be used. This
again requires a numerical solution.

(7)
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Fig. 5. Force at the top of the sucker rod as a function of time (rotation angle
�).

Fig. 6. Nonlinearity of the gearbox with jack.

C. Model of Sucker Rod With Plunger

For deep wells, the diameter of the sucker rod changes and
this leads to different stiffness and different mass for every sec-
tion of sucker rod. This distributed parameter system can be
properly approximated by lumped eight state variable systems
representing displacement and velocities of sucker rod sections.
Oil flow in the tube can be modeled by two additional state vari-
ables representing displacement and velocity. The model of the
sucker rod with plunger, which is shown in Fig. 7, is described
by the following set of eight differential equations:

(10)

(11)

(12)

(13)

Fig. 7. Model of sucker rod with plunger.

Fig. 8. Model of oil flow in formation and through valves.

(14)

(15)

(16)

(17)

The last segment of the model, which is described by (16),
has a relatively complex formula, which is different for the pos-
itive and negative velocity of the plunger. With upward velocity,
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(a) (b)

(c) (d)

Fig. 9. Results of simulation of the 1500-m-deep oil well where pumpjack balance mass is not chosen properly. (a) Sucker rod displacements. (b) Suckerrod
velocities. (c) Forces and torques. (d) Oil flow.

both the mass of the sucker rod and the mass of the oil in the pipe
must be encountered. Depending on the velocity direction, the
different frictional losses must be included. During the upward
movement, additional force due to the existence of differential
pressure must be also incorporated. Instead of signum function,
a hyperbolic tangent was used in order to secure the numerical
stability. Note that the differential pressure parameter de-
pends on the depth of the oil table.

D. Model of Three Dimensional Flow in the Formation

A three-dimensional model of oil flow through the forma-
tion can describe oil pressure distribution around the well. If
radial uniformity is assumed, this problem can be reduced to a
one-dimensional distributed parameter case, which can be well
approximated with ten state variables representing oil pressure
for different distances from the well, as shown in Fig. 8.

III. GENERATION OF TRAINING PATTERNS FOR

NEURAL NETWORKS

There are very different time constants in the system. The
smallest time constants, which are associated with the induc-
tion motor and sucker rod dynamics, are in the range of mil-
liseconds. The pumpjack operates with cycles varying from 5 to
20 s. Transient responses in the well itself have time constants
from several hours to several weeks, or even years, when well
capacity is considered. Significant differences in time constants
make the system very stiff and difficult to analyze. Traditional
forward Euler or Runge–Kutta methods would require the use
of very small time steps and an unrealistically long simulation
time. Many electronic systems have a similar stiffness and it is
usually solved by either trapezoidal or Gear methods. Both are
implicit methods. At each iteration step the system is linearized
and a solution to the set of linear equations must be found. Both
schemes are also used in the popular Spice program [22]. Since
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(a)

(b)

Fig. 10. Oil pressure distribution in vicinity of the well. (a) spatial distribution
around well with pumping time as parameter. (b) Transient response of the
pressure in the well with soil permeability as parameter.

the use of the implicit integration scheme, the computation time
is almost independent of the observation time.

The system of 25 differential equations is relatively complex,
but the simulation time for one set of parameters is usually com-
pleted within 15–30 s on a Pentium 200-MHz computer. When
the transient response of the well was done for a very large ob-
servation time (hours or weeks), then the complex 25th-order
model was replaced with a simpler model by replacing pulsed
oil flow with steady flow. With this simplification, the simula-
tion is done within 1 min, even for observation times of several
weeks.

Sample results of oil well simulations using the complex
model are shown in Fig. 9. Fig. 10 illustrates the oil table
change as a function of pumping time. Other data for faulty
traveling valve are given in [14]. The developed model of the
oil well was then used to generate data required for neural
network training.

The recording of currents and voltages at terminals of the
three-phase induction motor operating at 60 Hz leads to the col-

Fig. 11. Instantaneous power waveform represented by complex Fourier
coefficients.

lection of a tremendous amount of data. It turns out that most
of the important information is contained in the instantaneous
power of the induction motor [19]. The data for the transient
waveform of the instantaneous power is processed with a fast
Fourier transform (FFT). The complex Fourier coefficients are
generated, as shown in Fig. 11. Since this mechanical system
includes several large masses with inertia, the system works as
a high-order low-pass filter, therefore, only the first nine Fourier
components are used. As a result, each instantaneous power
waveform is represented by 20 numeric values: nine real, nine
imaginary, one representing the fundamental frequency, and one
representing the dc offset. These 20 values were used as the
input pattern for the neural network.

IV. NEURAL NETWORK ARCHITECTURE ANDTRAINING

Two different neural network architectures were used. For the
purpose of function approximation, the standard sigmoidal feed-
forward neural network was used, and for the fault diagnosis,
a special neural network architecture was implemented as de-
scribed later in this section.

In order to identify the depth of the oil table, the three-layer
standard feedforward network was used as a general approxi-
mator with one output. Various feedforward structures were ex-
plored with one pattern file used for training and with another
pattern file used for verification. All input and output patterns
were scaled in such a way that input and output values changed
within the 1 to 1 range. The best compromise between ac-
curacy and generalization was obtained using a neural network
with one hidden layer and full connections across layers. This
network has 20 inputs, ten neurons in the hidden layer, and one
output neuron. To train the network, a specially developed algo-
rithm described in [23] was used. This algorithm has the advan-
tage of rapid convergence of the Levenberg–Marquardt (LM) al-
gorithm [24], but in contrast to the LM algorithm it also works
well for large network structures.

The feedforward network 21-10-1 was adequate for func-
tion approximation, but it was found impractical for the iden-

Authorized licensed use limited to: ULAKBIM UASL - BOGAZICI UNIVERSITESI. Downloaded on February 19, 2009 at 07:16 from IEEE Xplore.  Restrictions apply.



WILAMOWSKI AND KAYNAK: OIL WELL DIAGNOSIS 1105

Fig. 12. Transformation of input patterns ton+ 1 dimensional space.

(a)

(b)

Fig. 13. Example of cluster separation in two-dimensional input space
using input pattern transformation ton + 1 dimensional space. (a) Network
architecture. (b)Transfer function of the network.

tification of faults such as the leakage of the traveling valve,
the leakage of the standing valve, and the mass misbalance on
the beam. Each abnormal mode of operation usually formed a
cluster of patterns in multidimensional input space, and these
clusters are specific to a given abnormality. In order to select just
one region in the -dimensional input space, more than
neurons in the input layer should be used. Radial base func-
tion (RBF) neurons [25], [26] are able to separate patterns in
the input space by circle, sphere, and hypersphere. This feature
makes the RBF network very simple and powerful in pattern
recognition. Unfortunately, RBF networks are difficult to train.
When the relatively simple transformation [27] to dimen-
sional space

(18)

is done to the input patterns as shown in Fig. 12, then the feed-
forward neural network with simple neurons can separate clus-
ters in the input space by circle, sphere, and hypersphere. For
example, after the transformation given by (18), three clusters
in a two-dimensional input space can be easily separated by

three sigmoidal neurons as shown in Fig. 13. With the intro-
duced transformation, a neural network with only one layer can
be used. Such network can be very easily trained. In our case, the
modified regression algorithm, as described in [28], was used.

V. RESULTS

Initially, both training patterns and verification patterns
were generated in such a way that, for each pattern, only
one variable (for example, leakage of the traveling valve) was
modified and the remaining parameters had normal values. In
this case, the neural network was able to identify the correct
fault in 100% of cases. More importantly, the neural network
was also able to identify how much a certain parameter had
deteriorated. For example, what is the leakage? What is the
effective depth? What is the location of the balance mass?
The accuracy of this identification varied from 10%, in the
case of the effective oil depth, to 50%, in the case of the
standing valve leakage.

For the next experiment, all four faults were introduced si-
multaneously by randomly chosen values. In this experiment,
correct results were obtained only if there was one clearly
dominant fault. When several faults were present, then the
neural network was often confused and misidentified faults.
This means that there are strong interactions of a nonlinear
nature between the parameters. This part would require further
study and probably a more sophisticated neural network ar-
chitecture. Introduction of other inputs to the network, which
can be easily measured on the surface, such as tension of the
sucker rod, may help.

Fortunately, three out of four of the investigated parameters
(the leakages and the mass location) can be assumed con-
stant during experiments, which leads to the identification of
formation permeability and reservoir capacity. As Fig. 10(a)
shows, the pressure distribution around a well changes with
the pumping time. The only parameter, which can be ob-
served in the wellbore, is the effective depth of the oil table.
Fig. 10(b) shows how the effective oil depth changes with
time for different values of the formation permeability. From
such transient responses it is possible, using well-established
techniques [29]–[31], to estimate formation permeability and
drainage-area pressure, reservoir heterogeneity, or boundaries.
In the traditional approach, the test is conducted by pumping
oil at a constant rate for some time, shutting down the pump,
allowing the pressure to build up in the wellbore, and recording
the pressure in the wellbore as a function of time. This, of
course, requires a pressure sensor located at the bottom of the
well. Note that, with neural network diagnosis, the effective
depth of the well (pressure) can be identified from terminal
parameters of the induction motor and this can be used instead
of a special sensor at the bottom of the well. The proposed
approach differs from the traditional in that the pressure can
be measured only when the pump is active.

VI. CONCLUSION

The terminal parameters of the induction motor contain sig-
nificant information about the oil well, which can be extracted
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using neural networks. This information is not only about the
condition of the oil reservoir, but it may lead to better adjust-
ments of the pump and its ballast so the pumping can be done
more efficiently. With this approach, motors with smaller nom-
inal power can be used instead of overrated motors operating at
a fraction of their nominal power. The application of this new
technology could lead to constant and effective monitoring of
oil wells. Measurements may lead to better diagnosis, adjust-
ment, choice of the optimum pumping rate, and a more efficient
use of energy.
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